ment of the Ag atom from the centre of symmetry depending on the orientation of the neighbouring CN groups.

Fig. 3. N-O bond lengths *versus* Ag-O distances. The points are labelled with the numbers from Table 2. The unlabelled point corresponds to an N-O single bond and a Ag-O single bond, from CH₃ONO and Ag₂C₂O₄ respectively.

This work was performed in part during the tenure of a fellowship for which D.B. would like to thank the National Science Foundation. The preliminary calculations were carried out on the IBM 1620 computer of this laboratory, using programs prepared by M. Dobler, H. C. Mez, P. Strickler, and H. P. Weber. The least-squares calculations were carried out on the CDC 1604 computer at the Numerical Analysis Center of the University of Minnesota, using programs prepared at Princeton University under the direction of Professor R. Jacobson. This part of the work was performed by Mr E. O. Schlemper and Mrs Judith Konnert, and supported by a grant from the National Science Foundation. We thank them all for their help.

References

ARNDT, U. W. & PHILLIPS, D. C. (1961). Acta Cryst. 14, 807. BRITTON, D. & DUNITZ, J. D. (1965). Acta Cryst. 19, 662. LINDQVIST, I. (1954). Acta Cryst. 7, 635.

- PROSEN, R. J. & TRUEBLOOD, K. N. (1956). Acta Cryst. 9, 741.
- SUTTON, L. E. (1958). *Interatomic Distances*. London: The Chemical Society.
- SWANSON, H. E., GILFRICH, N. T. & UGRINIC, G. M. (1955). N.B.S. Circular 539, vol. V, p. 59.
- WEST, C. D. (1935). Z. Kristallogr. 90, 555.

Acta Cryst. (1965). 19, 820

The Crystal Structure of α-Methyl D-Galactoside 6-Bromohydrin

BY J. H. ROBERTSON* AND B. SHELDRICK[†]

Department of Inorganic and Structural Chemistry, The University, Leeds, England

(Received 15 March 1965)

The crystal structure of α -methyl D-galactoside 6-bromohydrin has been determined by the heavy-atom method, at 125 °K. The bromine atom coordinates were derived from Harker sections. Three-dimensional structure factors and least-squares refinement of 1203 reflexions with anisotropic temperature factors gave a final residual R=0.108. All bonds, including the C(1)–O(1) bond, were found to be of normal length. The positions of the hydrogen atoms were found from the final 3-D Fourier synthesis. The hydrogen bonding system, which gives good agreement with the infrared spectroscopic data, consists of spiral linkages about the screw axes parallel to the *b* axis.

Experimental

 α -Methyl D-galactoside 6-bromohydrin was prepared by Valentin (1952); unit-cell and density measurements were made by Cox, Goodwin & Wagstaff (1935). The unit-cell dimensions were re-measured at 125 °K by the extrapolation to $\theta = 90^{\circ}$ of high order reflexions on zero layer Weissenberg photographs, calibrated with aluminum wire powder lines. The *a* and *c* axes of Cox et al. were interchanged for convenience. The unit cell is orthorhombic with systematic absences of h00 for hodd and 0k0 for k odd. The space group is $P2_12_12$ and the cell dimensions are:

$$a = 11 \cdot 142 \pm 0.005$$
 Åcf. Cox, et al. $11 \cdot 23$ Å $b = 7 \cdot 815 \pm 0.003$ at room temperature $7 \cdot 81$ $c = 10 \cdot 612 \pm 0.010$ $10 \cdot 58$

The value of the density observed, 1.86 g.cm^{-3} , gave a cell weight of 1035 and hence $Z=4.03 \text{ (C}_7\text{H}_{13}\text{BrO}_5=257)$.

The material was recrystallized from water, on a greased microscope slide, and a crystal with dimensions

^{*} Present address: University College, P.O. Box 9184, Dar es Salaam, Tanzania, East Africa.

[†] Present address: The Astbury Department of Biophysics, The University, Leeds, England.

 $0.25 \text{ mm} \times 0.25 \text{ mm} \times 0.21 \text{ mm}$ was selected. Full threedimensional data were collected with the use of Cu Ka radiation and the Weissenberg equi-inclination technique. The crystal was cooled to 125 °K by a stream of dry, cold nitrogen gas from apparatus similar to that described previously (Robertson, 1960). 1203 independent *hkl* reflexions were measured by the multiple film technique and correlated by hand calculation. 62 reflexions (marked with an asterisk in Table 6) were too weak to be measured. These were included in the leastsquares refinement as $\frac{1}{2}F_{\min}$ but without separate weighting.

Solution of the structure

The position of the bromine atom was found from the Patterson-Harker sections at $x=\frac{1}{2}$, $y=\frac{1}{2}$ and z=0. Examination of the three mutually perpendicular Pat-

terson projections showed that the x coordinate was general (at 5/60th a) but y was approximately $\frac{1}{4}$ and z=0 (or $\frac{1}{2}$). From the Harker sections it was possible to establish that the bromine atom coordinates were not quite so unfavourable as was first feared. The coordinates were specified as x = 5/60, y = 14/60 and z =1/120. A three-dimensional Fourier synthesis was computed on the Leeds University Ferranti Pegasus computer by the program written by Cruickshank, Pilling. Bujosa, Lovell & Truter (1961), with the phase angles specified by the bromine atoms. The resultant synthesis contained some spurious symmetry due to the nearspecial position of the bromine atom. Five definite light atom peaks were selected, two cycles of structurefactor least-squares (SFLS) refinement were carried out with the program written by Cruickshank et al. (1961) and the modified phase angles were used to

Table 1. Atomic coordinates and estimated standard deviations (Å)

	x	σ	У	σ	z	σ
Br	0.8976	0.0014	1.7809	0.0012	-0.1230	0.0016
O(1)	2.855	0.007	0.535	0.008	7.511	0.009
O(2)	9.663	0.008	0.083	0.008	5.211	0.007
O(3)	5.692	0.008	1.726	0.008	4.363	0.009
O(4)	3.568	0.007	0.062	0.008	3.404	0.008
O(5)	7.409	0.007	1.627	0.009	7.671	0.009
$\mathbf{C}(1)$	7.879	0.011	0.624	0.011	6.781	0.011
C(2)	9.079	0.010	1.132	0.014	6.020	0.013
C(3)	10.184	0.010	1.627	0.012	6.983	0.014
C(4)	4.033	0.010	1.223	0.012	2.722	0.013
C(5)	2.851	0.010	1.828	0.012	1.984	0.011
C(6)	2 ·197	0.013	0.865	0.011	1.046	0.016
C(7)	3.940	0.012	1.200	0.015	8.178	0.012

Table 2. Anisotropic temperature factors and estimated standard deviations

	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Br	0.0308	0.0242	0.0363	0.0036	0.0074	-0.0169
Ō(1)	0.0202	0.0147	0.0315	-0.0179	-0.0017	-0.0134
O(2)	0.0238	0.0098	0.0328	0.0016	-0.0134	0.0142
O(3)	0.0202	0.0135	0.0388	0.0099	-0.0156	-0.0128
O(4)	0.0121	0.0106	0.0392	0.0139	0.0032	-0.0023
O(5)	0.0137	0.0180	0.0350	0.0111	0.0021	-0.0020
$\mathbf{C}(1)$	0.0235	0.0135	0.0268		0.0021	0.0035
$\vec{C}(2)$	0.0133	0.0312	0.0290	-0.0089	0.0049	0.0087
C(3)	0.0112	0.0177	0.0454	-0.0061	0.0007	0.0137
C(4)	0.0134	0.0175	0.0426	-0.0049	0.0165	-0.0035
C	0.0196	0.0217	0.0169	-0.0119	0.0102	-0.0085
Cí	0.0299	0.0090	0.0532	-0.0049	0.0117	-0.0279
C(7)	0.0159	0.0401	0.0471	-0.0372	-0.0109	-0.0100
	_	_	_	_	_	_
	σ_{11}	σ_{22}	σ_{33}	σ_{12}	σ_{13}	σ_{23}
Br	0.0007	0.0007	0.0007	0.0010	0.0011	0.0010
O(1)	0.0037	0.0035	0.0042	0.0066	0.0074	0.0069
O(2)	0.0040	0.0032	0.0042	0.0060	0.0082	0.0071
O(3)						
-	0.0034	0.0033	0.0042	0.0068	0.0086	0.0073
O(4)	0·0034 0·0031	0·0033 0·0031	0·0042 0·0043	0·0068 0·0058	0·0086 0·0084	0·0073 0·0066
O(4) O(5)	0·0034 0·0031 0·0032	0·0033 0·0031 0·0034	0·0042 0·0043 0·0040	0.0068 0.0058 0.0060	0·0086 0·0084 0·0088	0.0073 0.0066 0.0068
O(4) O(5) C(1)	0.0034 0.0031 0.0032 0.0052	0·0033 0·0031 0·0034 0·0045	0.0042 0.0043 0.0040 0.0054	0.0068 0.0058 0.0060 0.0085	0·0086 0·0084 0·0088 0·0096	0.0073 0.0066 0.0068 0.0091
O(4) O(5) C(1) C(2)	0.0034 0.0031 0.0032 0.0052 0.0040	0.0033 0.0031 0.0034 0.0045 0.0062	0.0042 0.0043 0.0040 0.0054 0.0054	0.0068 0.0058 0.0060 0.0085 0.0101	0·0086 0·0084 0·0088 0·0096 0·0117	0.0073 0.0066 0.0068 0.0091 0.0086
O(4) O(5) C(1) C(2) C(3)	0.0034 0.0031 0.0032 0.0052 0.0040 0.0040	0.0033 0.0031 0.0034 0.0045 0.0062 0.0048	0.0042 0.0043 0.0040 0.0054 0.0054 0.0054	0.0068 0.0058 0.0060 0.0085 0.0101 0.0086	0.0086 0.0084 0.0088 0.0096 0.0117 0.0112	0.0073 0.0066 0.0068 0.0091 0.0086 0.0090
O(4) O(5) C(1) C(2) C(3) C(4)	0.0034 0.0031 0.0032 0.0052 0.0040 0.0040 0.0043	0.0033 0.0031 0.0034 0.0045 0.0062 0.0048 0.0050	0.0042 0.0043 0.0040 0.0054 0.0054 0.0054 0.0067 0.0067	0.0068 0.0058 0.0060 0.0085 0.0101 0.0086 0.0091	0.0086 0.0084 0.0088 0.0096 0.0117 0.0112 0.0109	0.0073 0.0066 0.0068 0.0091 0.0086 0.0090 0.0094
$ \begin{array}{c} O(4) \\ O(5) \\ C(1) \\ C(2) \\ C(3) \\ C(4) \\ C(5) \end{array} $	0.0034 0.0031 0.0032 0.0052 0.0040 0.0040 0.0043 0.0047	0.0033 0.0031 0.0034 0.0045 0.0062 0.0048 0.0050 0.0050	0.0042 0.0043 0.0040 0.0054 0.0054 0.0067 0.0067 0.0067	0.0068 0.0058 0.0060 0.0085 0.0101 0.0086 0.0091 0.0093	0.0086 0.0084 0.0096 0.0117 0.0112 0.0109 0.0085	0.0073 0.0066 0.0068 0.0091 0.0086 0.0090 0.0094 0.0094 0.0073
O(4) O(5) C(1) C(2) C(3) C(4) C(5) C(6)	0.0034 0.0031 0.0032 0.0052 0.0040 0.0040 0.0043 0.0047 0.0059	0-0033 0-0031 0-0034 0-0045 0-0045 0-0062 0-0048 0-0050 0-0052 0-0044	0.0042 0.0043 0.0040 0.0054 0.0054 0.0057 0.0067 0.0067 0.0067 0.0040 0.0080	0.0068 0.0058 0.0060 0.0085 0.0101 0.0086 0.0091 0.0093 0.0102	0.0086 0.0084 0.0088 0.0096 0.0117 0.0112 0.0109 0.0085 0.0108	0.0073 0.0066 0.0068 0.0091 0.0086 0.0090 0.0094 0.0073 0.0123

compute a second three-dimensional Fourier synthesis. In this all the atoms of the structure, with the exception of the carbon atom of the methyl group, could be distinguished. Seven cycles of SFLS were carried out with isotropic temperature factors for all the atoms except the methyl group carbon atom. This atom was then found by computing a difference Fourier synthesis for the sections where it was thought the methyl group should occur.

822

This atom was then introduced and four cycles of SFLS refinement were carried out with anisotropic temperature factors. Form factors published by Berghuis, Haanappel, Potters, Loopstra, MacGillavry & Veenendaal were used for carbon and oxygen atoms and by Thomas & Umeda (1957) for bromine. The weighting scheme used was $w=1/(2F_{\min}+F+2F^2/F_{\max})$. The final cycle gave a residual, R=0.108 and the observed and calculated structure factors are tabulated in Table6.

A final three-dimensional Fourier synthesis was carried out and examined for variations of electron density. Some small positive regions were noted, of peak heights $0.7-1.2 \text{ e.} \text{Å}^{-3}$. Some of these were in positions in which would be plausible for hydrogen atoms to occur. As confirmation, the standard deviation of the electron density was calculated by the formulae given by Cruickshank (1949) and by Cruickshank & Rollett (1953):

$$\sigma(\varrho) = \frac{1}{V} \left\{ \Sigma(\varDelta F)^2 \right\}^{\frac{1}{2}}$$

using a program written by one of us (B.S.) and found to be

$$\sigma(\varrho) = 0.37 \text{ e.A}^{-3}$$

i.e. a peak height of $0.8 \text{ e.}\text{Å}^{-3}$ would probably be significant. Thirteen possible hydrogen atoms were found and their positions were accurate enough to define the hydrogen bonding system. The coordinates of the atoms of one molecule are given in Table 1, together with the estimated standard deviations. The anisotropic temperature factors and their estimated standard deviations are given in Table 2, and the positions of the hydrogen atoms in Table 3.

Attempts were made to refine the data further by including the hydrogen atoms isotropically (R=0.105)

Table 3. Atomic coordinates of hydrogen atoms (unrefined) (Å)

	x	У	Ζ
H(1)	4.04	0.80	6.19
H(2)	8.73	1.91	5.40
H(3)	10.46	0.78	7.57
H(4)	4 ·74	1.17	2.03
H(5)	8.73	1.43	9.37
H(6)	1.76	1.40	1.68
H(7)	1.80	0.00	8.91
H(8)	4.36	1.04	9.29
H(9)	4.55	1.04	7.16
H(10)	8.91	1.82	1.77
H(11)	6.59	1.04	4.51
H(12)	4.77	0.00	3.86
H(13)	9.42	0.13	6.37

and by correcting the data (40 reflexions) for the presence of secondary extinction (R=0.096). These measures had little effect on the atomic coordinates and the reduction of the e.s.d.'s was comparable to the reduction of the residual R. The stereochemical arrangement is shown in Fig. 1.

The bond lengths, bond angles and related e.s.d.'s were calculated by a program written by Dr Mary R. Truter and the results are shown in Figs. 2 and 3 and Tables 4 and 5.

Structure of the molecule

The molecule has the expected chair form with the configuration 1a2e3e4a, as found for β -arabinose by Fur-

Table 4. Bond lengths and estimated standard deviations

Bond	<i>l</i> (Å)	e.s.d. (Å)
Br-C(6)	1.974	0.014
C(1) - C(2)	1.509	0.016
C(2) - C(3)	1.551	0.017
C(3) - C(4)	1.502	0.017
C(4) - C(5)	1.524	0.012
C(5) - C(6)	1.492	0.018
O(1) - C(1)	1.430	0.014
O(1)–C(7)	1.436	0.016
O(2) - C(2)	1.448	0.012
O(3) - C(3)	1.414	0.014
O(4) - C(4)	1.425	0.014
O(5) - C(5)	1.461	0.013
O(5)-C(1)	1.421	0.014

Table 5. Bond angles and estimated standard deviations

	Angle (°)	e.s.d.
Br-C(6)-C(5)	111°02′	0°47′
O(5)-C(1)-C(2)	109 56	58
O(5)-C(1)-O(1)	110 16	56
O(1)-C(1)-C(2)	107 39	54
C(1)-C(2)-C(3)	111 18	12
C(1)-C(2)-O(2)	111 02	11
O(2)-C(2)-C(3)	107 09	54
C(2)-C(3)-C(4)	109 05	53
C(2)-C(3)-O(3)	110 19	14
O(3)-C(3)-C(4)	109 49	58
C(3)-C(4)-C(5)	108 28	1
C(3)-C(4)-O(4)	113 55	13
O(4) - C(4) - C(5)	107 26	50
C(4)-C(5)-C(6)	112 46	1 1
C(4)-C(5)-O(5)	110 03	54
C(6)-C(5)-O(5)	108 13	55
C(5)-O(5)-C(1)	113 40	49
C(1) - O(1) - C(7)	113 20	51

Fig. 1. Stereochemical arrangement.

J. H. ROBERTSON AND B. SHELDRICK

Table 6. Observed and calculated structure factors

In each group headed by the values of h and k, the columns give l, $10|F_o|$, $10F_c$, $10A_c$, $10B_c$.

01234	0 234 382 1112 956	311 311 0 485 485 0 1419 1419 0 1146 1146 0	2 M 4 56	81 66 0 48 45 0 105 108 0 - 103 104 0 - 86 121 0 -	-66 9 45 108 1 108 1 104 0 121 1	8 8 94 221	214 -202 -69 119 119 0 211 209 -34	6 7 8 9 10	118 193 157 149 108	100 183 189 160 106	-90 44 -153 100 -105 157 -133 89 -47 95	9 10 11	139 198 111 134	127 167 85 114	-54 115 61 156 21 77 58 98
56 7 9 10 11 12 13	399 578 564 381 307 358 256 262 41	468 468 0 631 631 0 597 597 0 298 298 0 299 292 0 373 373 0 240 240 0 219 219 0 8 8 0	0 15 1 0 1 2 3 4 56	105 102 -102 292 308 0 409 375 0 471 507 0 132 158 0 166 171 0 286 312 0	308 7 375 8 507 1 158 1 171 0	2 296 3 31 98 5 129 131 118 8 84 9 9 262	310 309 23 12 9 7 128 121 -41 127 125 -19 130 125 -37 105 103 -22 69 12 -68 278 278 0	201234567	7 367 302 312 229 218 146 200 142	391 246 300 213 125 217 138	391 0 185 -162 218 205 200 54 199 -75 112 55 169 135 87 108	5.123456780	240 527 4824 324 2888 2288 2288 2288 2288 2288	858 526 526 526 526 526 526 526 526 526 526	-2.8 0 -491 177 -467 -165 -321 6 -283 9 -285 -37 -212 -28 -212 -28 -212 -28
1234 567890 111 12	196 282 151 28 112 105 44 164 78 59 43	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	578900 111123 11213 11212	255 266 0 276 314 0 276 314 0 154 135 0 90 99 0 186 169 0 180 176 0 48 73 73 526 561 59 526 561 59 595 601 576	5/3 1 5/6 2 314 2 315 4 135 4 -99 6 169 1 176 1 0 2 5558 0 171 1	265 211 3 183 218 118 139 10 139 10 399 460	292 292 -16 259 258 -18 202 200 25 278 275 37 139 137 -26 230 223 56 172 -172 -2 376 -376 0 589 589 0	09 2012345678	103 146 55 904 170 115 125 125 145	69 52 63 158 116 146 142 169	151 -1 109 85 50 -13 41 -48 151 -47 111 -31 59 -131 39 -109 96 -105 98 -138	3012345678	7 62 121 166 80 95 125 71 81	104 107 33 112 115 65 95 73 102 88	-150 -42 -157 14 -33 0 6 -112 -154 -49 57 -46 57 -46 -57 -46 -69 -55
3 0012345670	2 1153 1104 631 734 653 930 235 535	102 0 102 1277 -1277 0 1251 -1251 0 725 -725 0 853 -853 0 708 -708 0 1189 -1189 0 250 -250 0 640 -640 0	3456789011213	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50 2 1492 3 1492 4 1955 56 1309 7 1497 99 1977 90 1977 90 1977 10 -411 111 72 12	951 406 277 668 214 270 312 201 125 34	1208 1208 0 396 396 0 295 295 0 222 222 0 251 261 0 331 331 0 214 214 0 102 102 0 2 -2 0 150 150 0	20123456 3	70 173 135 100 112 81 35	55 183 - 125 - 90 119 107 - 84	55 0 -151 -103 -109 -60 -90 1 -5 -119 -106 10 -81 -21	301234567	8 216 338 274 243 225 220 155	216 326 411 292 237 247 174	47 -35 216 C 314 87 398 -103 287 -54 287 -57 236 -14 247 -3 166 51
8 9 10 11 12 0 1 2	333 294 202 321 197 3 368 273	334 - 334 0 303 - 303 0 211 - 211 0 277 - 277 0 168 - 168 0 308 0 308 245 0 -245	1 2 1 2 3 4 56	392 341 -341 581 566 -544 259 239 205 568 525 -53 324 277 -277 218 245 72 283 297 13	13 0 2 156 0 123 1 522 2 -2 3 234 4 297 5	108 1 593 920 962 799 587 454	100 100 0 770 -770 0 1155 -1140 182 1057 -1009 -317 888 -884 -83 656 -652 -70 494 -488 77	123456789	362 131 169 124 254 254 36 36	294 17 93 94 117 30 241 28 27	0 -294 0 -17 0 -93 0 94 0 -117 0 -30 0 241 0 -28 0 -27	3 0 1 2 3 4 4 5	9 84 123 56 117 17 15	74 74 108 20 16	-74 0 39 63 -62 -6 105 -25 16 12 -4 15
*34 56789011	15 288 101 48 294 28 141 164 81	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 8 9 10 11 12 13 1 3	207 196 -70 231 222 -52 239 213 -33 187 222 -108 155 153 0 180 144 -13 183 168 -53	184 6 215 7 210 8 194 9 153 10 153 10 160 12 13	445 482 351 202 324 231 81 153	500 -496 -60 519 -515 -62 365 -354 91 165 -165 -10 293 -286 -65 213 -213 5 75 -73 17 125 -88 -88	10 11 #12 #13 3 1 0 1 2	101 105 28 20 184 145 748	113 84 20 176 110 761	0 113 0 -84 0 2 0 20 176 0 70 .84 -660 379	4012345670	533 311 355 240 685 303 303 45	505 341 394 227 749 295 295	-505 0 -341 0 -394 0 -227 0 -749 0 -20 0 -20 0 -295 0 -22 0
13 001 234	54 53 4 972 340 640 622 587	41 0 41 54 0 54 1023 1023 0 373 373 0 703 703 0 659 0 615 615 0	012345678	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	236 0 -652 2 -652 2 -48 3 -48 3 -339 5 -31 7	2 925 140 555 845 263 309 307	971 -971 0 143 -139 33 582 -580 -50 890 -873 -172 292 -205 208 260 -252 64 311 -307 51 301 -296 55	34567890 10	684 94 290 341 282 260 199 234 245	613 59 275 399 275 250 176 212 227	497 358 -3 -59 10 275 55 395 23 274 -26 248 44 171 -64 203 22 226	9 * 10 * 11 12 13 4	139 139 34 129 20 1 656	359 152 18 2 97 34 753	-359 0 -152 0 18 0 -97 0 -34 0 -753 0
56 78 90 11 12	404 657 314 239 159 305 99 161	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 10 11 12 13 1 * 0 1	285 287 -205 203 171 -43 113 83 -80 104 71 -24 89 87 -47 33 29 29 289 309 253	200 8 165 9 -23 10 -67 11 -73 12 13 0 2 178 0	252 259 170 74 160 116 3	265 -212 159 242 -201 135 167 -163 -36 66 -23 62 122 -106 61 105 -95 44	12 13 0 1 2 3 4	198 168 194 439 426 218 255	211 166 142 - 431 - 426 - 182 - 246 -	-24 209 38 162 -142 0 -220 370 -301 -301 -158 -90 -222 106	123456789	664 906 519 680 717 454 452 308 314	806 999 544 748 798 443 470 279 310	-785 -183 -979 199 -530 123 -735 -141 -798 10 -412 163 -468 -44 -279 -4
0123456780 *	5 125 348 299 239 188 152 41 113	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 34 56 78 90	325 333 331 267 232 -21 220 195 107 376 370 368 281 297 176 196 174 -108 236 238 189 154 118 81 228 204 -10	38 1 231 2 37 4 239 5 136 6 136 8 144 7 -86 8 204 9	5555 5555 451 3555 273 273 213	635 626 -106 657 596 276 571 570 -22 815 807 111 459 457 -30 342 326 103 461 459 50 281 281 12 192 166 97	56 78 9 10 *11 *12 *13	331 142 122 178 190 92 28 23 15	362 - 111 76 194 - 167 - 67 39 53 24	-362 3 -84 -73 -67 -35 -168 98 -112 -124 24 62 -38 -11 -42 -33 -21 10	10 11 12 13 4 0 1 2	265 139 190 119 217 601 310	244 119 164 123 261 592 243	-230 82 -113 -37 -161 27 -122 20 261 0 590 -52 -61 236
90 11 00 12 34	6 367 521 351 449	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 1 5 0 1 2 3 4 5	127 107 54 308 294 294 376 361 361 473 471 470 275 280 267 361 371 352 361 371 352	0 2 11 0 2 15 -22 1 17 30 005 3	226 163 156 4 435 275 576 395	209 207 -28 136 113 77 126 111 60 473 473 0 266 261 -54 561 -533 -177 353 343 80	301234567	63 241 262 269 504 339 142 284	67 189 218 204 452 - 297 127 295	-67 0 -81 -171 133 -173 195 59 -435 -123 65 -290 -4 -127 93 -280	74 56 78 90 112	1996 214 1326 159 147 187 187	143 340 116 263 168 149 127 128 48	331 -80 88 202 115 -7 261 34 163 41 148 -20 -22 125 19 48 -27 40
56 78 9 10	410 269 262 135 123 194 7	404 -404 0 228 -228 0 247 -247 0 151 -151 0 106 -106 0 178 -178 0	6 47 9 10 11 11	437 414 400 - 42 48 44 304 282 232 160 146 137 118 110 67 118 97 83	107 5 101 5 161 7 48 8 87 9 50 10 11 12	249 413 255 341 229 112 160 142	224 149 -168 407 318 -254 19 17 7 235 231 -41 325 223 -236 196 167 -103 91 89 -21 136 69 -117 130 83 -101	8 9 10 11 12 3 4 0	434 187 157 252 156	421 - 147 140 240 145 463	231 -352 123 -80 0 -140 -45 -236 -1 -145 463 0	4 0 1 2 3 4 56	3 736 712 497 382 504	634 797 781 530 349 544	634 0 753 -260 773 108 524 -85 349 -11 539 -78
*23456789	510 146 141 450 31 212 114 215	219 0 219 97 0 -97 99 0 -99 453 0 453 50 0 50 3 0 3 199 0 199 99 0 99 230 0 230	012345678	203 184 -182 276 213 -208 205 201 -174 155 133 -131 262 261 -239 231 215 -182 204 182 -165 106 97 34	-27 2 48 0 1-26 1 104 2 104 3 115 4 78 5 91 6	5 619 414 317 403 451 416 175	573 -573 0 439 -422 -119 301 -291 78 403 -394 81 469 -434 -178 428 -418 94 153 -121 -93	-23456789	355 375 259 174 367 241 115	13336 23336 23352 1526 1526 1526 1526 1526 1526 1526 15	43 315 136 328 -59 503 235 119 -199 138 65 316 82 142 -133 84 1	7 8 9 10 11 12 4	296 434 285 251 188 90	271 335 252 216 190 112	309 -29 242 -121 333 -31 252 -7 212 -44 172 -80 111 -15
001234567	8 286 176 293 29 170 144 166 43	259 259 0 162 162 0 286 286 0 22 22 0 150 150 0 129 129 0 169 169 0 40 40 0	9 10 1 2 3 4 5	113 -78 118 96 -64 298 266 -266 488 457 -456 204 205 -187 381 400 -398 286 288 -282 232 238 -231	01 7 71 8 9 10 29 11 833 2 37 0 563 1	358 252 211 116 142 6 175 207	360 -283 -223 223 -222 -18 207 -185 -93 86 -74 -45 135 -123 -55 143 -143 0 162 -113 116	10 11 12 3 5 0 1 2 3 4	193 93 43 125 220 309 256 95	171 51 32 122 208 288 - 218 57	102 53 48 19 30 -11 122 0 207 16 265 114 189 108 57 1	0123456789	277 201 418 352 293 136 403 186 211 158	250 178 423 310 271 112 368 152 166 135	-200 0 -161 76 -421 -33 -265 -161 -270 14 99 -52 -314 -191 -73 -133 -160 -42 -57 -122
0 1	9 106	87 0 87	ē 7,	262 281 -281 140 139 -132 163 174 -152	7 3 43 4 86 5	214 211 293	181 -171 58 208 -176 112 267 -182 195	56 7	183 269 226	160 - 243 176	139 80 -10 243 113 135	10 11 12	166 94 14	159 75 65	-78 -138 -31 -68 -29 -58

STRUCTURE OF α -METHYL D-GALACTOSIDE 6-BROMOHYDRIN

		Table 6 (cont.)	
4 0 1 2 3 4 5 6 7 8 9 0 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
401234567890 401234	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
5678 401234567 40	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
12345 51234567890112	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
50123456789011 125010	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
234567892 501234567	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	300 4003 0 99 493 75 92 248 24 433 324 -64 320 324 -64 27 257 -88 27 257 -13 20 108 -72 21 -127 11 -256 -41 -393 -256 -41 -393 -256 -41 -393
890112 50123456789011	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 6 (cont.)

234		197 113	195 117	27 32 154 63 113 28	11 *0 1	1	163 163	38 114	38 0 101 53	11 • 0 1	5	39 210	6 201	6 197	38	50 7		228 167 89	253 214 113	-251 -237 -111	-28 54 19	5	2	7U	81	30	76
6 7 3	_	122 44 75 98	105 72 81 101	25 63 78 22 49 89	34567		97 74 123 103	55 74 111 109	-34 -49 23 -50 21 -71 104 -38 -103 -36	2 3 4 5		139 118 138	91 129 108 150	88 129 64 149	21 -87 -9	12 ن 1 2	3	63 154 36	60 144 24	-50 -90 -8	0 112 -23	*01 *23	2	61 69 55 61	48 61 46 72	48 -13 -37 -40	0 59 -27 60 75
10 C	5	237 235	207 213	207 J 218 -4	•8	2	29	33	27 18	0	ь	149	165 132	165 131	-22	774 D		85 142 33	75 162 46	-65 -8% 27	-37 136 38	*5	3	30	15	14	-4
234		173 229	282 160 250	260 -109 159 -18 240 -72	יי ו פ	2	157 95	142 53	142 0 -1 -53	3	0	75	88	88	42 5	6 12	4	58	61	-57	22	10	2	27 154 125	22 142 135	. 22 -111 -131	ن 89 -33
56 7		150 149	168 203	168 -10 191 -70	345		207 89 170	202 64	95 178 64 · 5	0	0	406 313	462 263	462 263	0	C 1 2		267 221 132	352 242 115	352 233 96	63 -63	34		122 59	142 60	-103 -49	-97 35
10 	6	135 115	123	-123 -58 -67	•7	2	155 53	185 59	67 173 36 46	34		345 226 231	387 259 223	387 259 223	0000	3 4 5		240 136 156	254 138 199	264 138 197	-6 24	13 0 1	4	122 99	152 115	-152 115	-1
2345		110 79 74	64 91	-87 12 -56 -30 -66 -63	0 1 2	2	328 214 119	326 183 92	-326 0 -6 -183 -50 77	6 7	1	162 235	222 294	222 294	0	12 * 0 1	5	26 113	22 101	22 89	-47	14 0	с	138	141	141	υ
10	7	158	144	-144 3	34		98 142 25	76 140 40	-74 15 -140 -10 -3 39	1 2		50 73 148	35 53 142	-35 40 138	-34 -33	3	0	27	40 41	40	8	1 2 3		119 132 98	146 185 105	146 185 105	c c c
2 11	c	113	110	-97 53	*7		107 20	111 49	-106 32 4 49	3 4 5		102 51 106	89 53 100	86 42 35	23 -33 -94	4 1 2 7	υ.	27 54 123	21 58 141	0 0 0	21 -58 -141	14 0	1	160	165	-165	Ű
1 2 3		159 184 189	147 154 176	0 -147 0 154 0 -176	#0 1	4	43 159	40 186	-40 0 -163 -90	* 7		123 51	120 87	105 86	58 -10	4 45		35 19	39 16	0 0	-39 16	23		136 74	161 129	-161 -129	15
45678		103 79 89 206 76	90 88 113 213 68	0 -90 0 -88 0 -113 0 -213 0 -68	2014 566 7		179 75 189 194 59 71	190 67 188 189 58 113	-186 35 17 -65 -89 -166 -188 -14 -31 -50 -48 -103	1201234	5	441 228 292 231 237	448 211 281 225 242	-448 -210 -281 -213 -240	-26 -22 -72 -72	13 *0 *1 *2 3	1	43 33 35 120	27 39 34 119	-27 31 34 83	0 -24 854	14 0 1	2	142 80	174 118	-174 -118	-12

berg & Hordvik (1957). All the bond lengths are normal with an average carbon-carbon length of 1.516 Å and an average carbon-oxygen length of 1.434 Å. The average estimated standard deviations are 0.015 Å and 0.013 Å respectively. The largest deviation from the mean, for the C-C bonds is the C(2)-C(3) distance of 1.551 Å, a difference of 0.035 Å, about 2.3 standard deviations and, for the C-O bonds, the O(5)-C(5) distance of 1.461 Å, a difference of 0.027 Å, *i.e.* about 2.1 standard deviations.

Previous structure determinations of monosaccharides have been carried out on α -glucose (McDonald & Beevers, 1952), α -rhamnose (McGeachin & Beevers, 1957), β -arabinose (Furberg & Hordvik, 1957) and β -glucose (Ferrier, 1963). In all these cases the C(1)-

Fig. 3. Bond angles.

113°20'

O(1) bond length has been found to be much shorter than other, similar bonds in the same molecule, *e.g.*

	Average C-O	C(1) - O(1)	e.s.d.
	(Å)	(Å)	(Å)
x-D-Glucose	1.40	1.32	
x-Rhamnose	1.435	1.376	_
3-Arabinose	1.434	1.382	0.009
3-D-Glucose	1.444	1.404	0.010
f. α-Methyl			
galactoside			
6-bromohydrir	n 1·434	1.430	0.014

The amount of shortening in each of the four cases is equivalent to about 10% double bond character (Pauling, 1960) and may be related to the differences of reactivity noted for this hydroxyl group. In the case of α -methyl D-galactoside 6-bromohydrin, in which the O(1) carries a methyl group and not a hydrogen atom, the bond length C(1)-O(1) is not shorter than the average but is almost exactly equal to the average. This would suggest that the short bond in the α position is an effect which is eliminated completely when the hydrogen atom is substituted.

Crystal structure and hydrogen bonding

The crystals have cleavage planes perpendicular to the z axis but are resistant to cleavage in any other direction. Examination of the crystal structure shows that the bromine atoms are arranged in the form of layers with the galactose molecules filling the space between the layers. No hydrogen bonds can pass through the layer of bromine atoms which thus becomes the cleavage plane, but the molecules are bound together by the hydrogen bonding system in the other directions. Details of the crystal structure are shown in Figs. 4 and 5.

Before the structure was solved the infrared spectrum was examined in order to gain some information about

the hydrogen bonds to be expected. The spectrum is shown in Fig. 6. This shows no peak at a wavelength of $2 \cdot 8\mu$ which would correspond to a free hydroxyl group. The peaks which do occur were thought to represent a double-weight peak at $3 \cdot 03\mu$ and a singleweight peak at $2 \cdot 92\mu$. These may be related to the length of the O-H \cdots O distance to be expected following Nakamoto, Margoshes & Rundle (1955). The values calculated by this process were:

> 2 O-H---O distances of 2.78 Å 1 O-H---O distances of 2.85

The values obtained in the final structure were:

	l	σ
O(4)–HO(2)	2•733 Å	0∙010 Å
O(3)-HO(4)	2.778	0.011
O(2) - H - O(3)	2.824	0.011

and this agreement is quite good.

The hydrogen bonds form spiral arrangements around the screw axes of the unit cell at $x = \frac{1}{4}$ or $\frac{3}{4}$ and $z = \frac{1}{2}$, and extend through the crystal parallel to the *b* axis. Examination of the hydrogen atom positions showed that the directions of the bonds are as shown in the diagrams, *i.e.* the spiral around the $\frac{1}{4}$, *y*, $\frac{1}{2}$ screw axis is directed in a positive direction with respect to the *b* axis while the spiral around the $\frac{3}{4}$, *y*, $\frac{1}{2}$ screw axis has the opposite sense. The absolute sense of the direction of these spirals follows from the choice of the correct absolute configuration for the D-galactose molecule.

The dimensions of the unit cell in the x and y directions appear to be mainly dependent upon the size and packing of the bromine atoms. This produces some gaps or holes in the structure parallel to the b axis at $\frac{1}{2}$, y, $\frac{2}{5}$ and 0, y, $\frac{3}{5}$. These channels are quite empty as they are not quite wide enough to contain water molecules and the material is thus anhydrous.

We wish to thank those named in the text for the use of their programs, the Director and staff of the University of Leeds Computing Laboratory for the calculations carried out on the Ferranti Pegasus computer and Sir Gordon Cox, K.B.E., F.R.S., for his initiation and encouragement of this work.

References

- BERGHUIS, J., HAANAPPEL, IJ. M., POTTERS, M., LOOPSTRA, B. O., MACGILLAVRY, C. H. & VEENENDAAL, A. L. (1955). *Acta Cryst.* 8, 478.
- Cox, E. G., GOODWIN, J. H. & WAGSTAFF, A. I. (1935). J. Chem. Soc. p. 978.
- CRUICKSHANK, D. W. J. (1949). Acta Cryst. 2, 65.
- CRUICKSHANK, D. W. J. & ROLLETT, J. S. (1953). Acta Cryst. 6, 705.
- CRUICKSHANK, D. W. J., PILLING, D. E., BUJOSA, A., LOVELL, F. M. & TRUTER, M. R. (1961). Symposium on Computer Methods. London: Pergamon Press.
- FERRIER, W. G. (1963). Acta Cryst. 16, 1023.
- FURBERG, S. & HORDVIK, A. (1957). Acta Chem. Scand. 11, 1594.

- McDonald, T. R. R. & Beevers, C. A. (1952). Acta Cryst. 5, 654.
- McGEACHIN, H. McD. & BEEVERS, C. A. (1957). Acta Cryst. 10, 227.
- NAKAMOTO, K., MARGOSHES, M. & RUNDLE, R. E. (1955). J. Amer. Chem. Soc. 77, 6480.
- PAULING, L. (1960). The Nature of the Chemical Bond. 3rd Edn. London: Oxford Univ. Press.
- ROBERTSON, J. H. (1960). J. Sci. Instrum. 37, 41.
- THOMAS, L. H. & UMEDA, M. (1957). J. Chem. Phys. 26, 293.
- VALENTIN, F. (1952). Coll. Trav. Chim. Tschecoslovaquie, 4, 364.

Fig.4. Diagram of the unit cell projected down the b axis. The channels through the structure at $\frac{1}{2}$, y, $\frac{2}{5}$ and 0, y, $\frac{3}{5}$ are prominent. Hydrogen bonds are shown as dashed lines.

Fig. 5. Diagram of the unit cell projected down the c axis.

